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ABSTRACT 

 
For urban scaling, we define four different sets of relationships that tie together 
theories and methods that describe and explain how cities and their spatial locations 
change as they scale. By scaling we mean changes in the size of urban phenomena 
such as population that take place as cities grow and more generically, how cities 
change over time. These relationships cover city size distributions and the rank size 
rule, urban density functions that relate to how dense populations are with respect to 
their location around the central area of cities, how gravitational interactions between 
locations scale with respect to distance, and finally how attributes relating to size in 
cities such as income scale allometrically as cities change in size. These four 
relationships can be associated with those who first popularised their form, which in 
the order we introduce them, are what we call Zipf’s Law, Clark’s Law, Tobler’s Law, 
and Marshall’s Law. Having described their form, we illustrate their application to the 
distribution of employment and populations for small areas and for whole cities in 
the UK, reflecting a form of spatial intelligence for planning informed by the 
principles of urban scaling. 
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1 The Context 
 
One hundred years ago in thinking about how biological systems evolved, the gestalt 
psychologists who believed that our understanding of the world was composed of a 
unique ability to synthesise diverse elements in our environment, adopted the mantra 
that “… the whole is greater than the sum of its parts”. It was Kurt Koffka (1935) who 
is accredited with this phrase although the idea goes back to classical times, to the 
words of Aristotle who implied that synergy is a key property in explanation. This 
notion that ‘more can come from less’ encapsulates the idea that as a system evolves, 
it can change qualitatively, which is often revealed in its changing shape or 
morphology. The most obvious and immediate example is the human form where a 
new born baby’s head is proportionately much bigger than its body mass whereas a 
growing child quickly stabilises in terms of the shape of its body parts as adolescence 
is passed. As we grow, indeed as any object grows, one critical property is its scale. 
Indeed as an object gets bigger or smaller, it is said to scale and in this sense, if an 
object scales and changes qualitatively with respect to the ways it elements form and 
interact, then we say that the phenomenon is ‘scaling’. This is essentially the meaning 
of scaling as developed in the many contributions that comprise this book.  
 
The simplest, and in some respects the special case of scaling, is when an object 
increases or decreases its size linearly, that is proportionately to its mass or volume or 
some other measure of its geometry. If this increase is more than proportionate, the 
relationship is super linear while if the increase is less than proportionate, the 
relationship is sub linear. In biology, super linear is often called positive allometry 
while sub linear is called negative allometry and there is a direct correspondence 
between this scaling and economies and diseconomies of agglomeration in economics. 
In turn these scale economies are sometimes mapped onto the positive benefits that 
might accrue from growth or negative benefits, and these have different 
interpretations and formulations (West, 2017). Although the focus is usually on 
growth, scaling in spatial systems is usually defined not with respect to the processes 
of growth but to the emergent patterns that at any particular time, display positive or 
negative allometry. Although systems can be seen as being organised from the top 
down with successive subsystems scaling in some fashion as a hierarchy of parts, this 
can also be seen as a series of ever larger subsystems that emerge from the bottom up. 
In fact scaling in this fashion is entirely coincident with the complexity sciences whose 
elements often display a particular motif that is replicated at ever larger scales, as 
fractal patterns that scale non-linearly. Although we do not have the luxury of 
developing these ideas here, the notion that we can define geometric scaling in 
mathematical terms serves to focus our initial review on the key relationships that 
recur again and again in the various chapters that follow. Readers can find more 
detailed explanations of the relationships to different morphologies, particularly 
cities, in Batty and Longley (1994) and Batty (2005).  
 
 
2 The Basic Scaling Relations 
 
The core relation relates the size of some set of objects, phenomena, or system to their 
order, and by order we mean the relationships between the objects. The simplest order 
is based on arranging the objects with respect to some property such as their size (or 
scale) and examining the way this size distribution behaves. We first define the set of 
𝑛 objects where each object is defined as 𝑃! , 𝑟 = 1, 2, 3, … , 𝑛 where the obvious order is 
simply to associate the size of the object to its rank measured with respect to its reverse 
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order. This relates 𝑃!  to 𝑛 − 𝑟 − 1 where 𝑃! ∝ 𝑛 − 𝑟 − 1 and it is clear that this is a 
simple linear relation where size is proportional to the reverse rank. These is no 
scaling in this relationship for the size of the object is the same as its reverse rank. This 
is almost nihilistic in its form but if we arrange the objects by size in their basic rank 
order, we derive the nonlinear relation 
 

𝑃! = 𝐾𝑟"#  .        (1) 
 
𝐾 is a constant that determines the dimension or metric of the relation. This is the 
classic rank size relation associated with the frequency distribution of the set of {𝑃!} 
objects and now known as the ‘rank size’ rule or Zipf’s Law (Zipf, 1949). To 
demonstrate that the relationship is scaling, if we scale the rank 𝑟 in equation (1) by 
the parameter 𝜆 as (𝜆𝑟)"#, this can be manipulated to show that 
 

𝜆"#𝑃! = 𝐾(𝜆𝑟)"# = 𝐾𝜆"#𝑟"# ∝ 𝑃! .     (2) 
 
This says if we double the rank, by say 𝜆 = 2, we halve the size of the object in question 
and this indicates the more than proportionate decrease which is associated with the 
scaling. 
 
This relation has been very widely used to examine the relative frequencies and 
attributes of objects that form systems where the objects compete against one another 
to grow; for example, the size of cities, income distribution, the frequencies of words, 
and the distribution of many natural and physical phenomena from animal 
populations, flora and fauna to geophysical distributions such as earthquakes and 
volcanoes. In terms of cities, Zipf (1949) was one of the first to demonstrate that city 
size distributions followed the pure rank size scaling as in equation (1) although many 
others who followed him, have noted that the inverse scaling is more likely to use a 
power law where the exponent 𝛼 differs from 1. This is written as 𝑃! = 𝐾𝑟"$ although 
it is likely that the ‘true’ relation is more like a lognormal with the inverse power only 
associated with the upper or heavy tail of the distributions where the largest objects 
exist. 
 
The second form of scaling that we introduce is in some senses the opposite or even 
complement to the rank size rule. Imagine that the ranks no longer relate to the order 
of objects from large to small but to the distance from some origin or source. In other 
words, the objects are no longer ranked in terms of their size, but the distance of each 
object from some source now reflects the order. Whereas the rank size rule represents 
order in which the objects are ranked from large to small, the new rule is based on an 
order associated with the objects that arranges them according to their position. This 
is exactly the way we would examine an attribute of an object at a series of successive 
distances from some source. It might be the density of say population at increasing 
distances from the central core of the city, as reflected in what is called Clark’s Law. 
Clark (1951) like some before and many after argued that the density (and/or rent) of 
population falls off according to some inverse exponential of distance from some point 
usually the central business district (CBD) of large metropolitan areas. If we now 
define the density of the object as 𝑃% and the distance of the object from the CBD as 
𝑑% , 𝑗 = 1, 2, 3, … , 𝑛 , then Clark hypothesised that the relation should be a negative 
exponential, that is 
 

𝑃% = 𝐾𝑒𝑥𝑝(−𝛽𝑑%) ,       (3) 
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where 𝐾 is the dimensional constant as before and 𝛽 is the scaling parameter. In fact 
in many applications of these kinds of model, an inverse power is used instead of a 
negative exponential and thus the complement to the rank size rule that we might call 
the rank distance rule is 
 

𝑃% = 𝐾𝑑%
"& .        (4) 

 
Note that the key difference between equations (1) and (4) is the size of the populations 
in (1) are ordered by size from 𝑃#… 𝑃' …𝑃( while the sizes in (4) are arranged in the 
order given by distance from the CBD 𝑑#… 	𝑑% …	𝑑(. 
 
Our third scaling function also relates to position and distance but in terms of 
interaction between any two locations and the flow of activity between them. In the 
same way that Clark’s Law defines how density decays from a given locational focus, 
the CBD, interaction defined as 𝑇)% between any two locations 𝑖 and 𝑗	is a function of 
the distance between them 𝑑)%. We can define this kind of relation from one of many 
gravitational equations typical of which is  
 

𝑇)% = 𝐾𝑃)𝑃%𝑑)%
"* ,       (5) 

 
where 𝐾 and 𝛾 are appropriate parameters and the basic scaling is applied to distance 
𝑑)% in the same manner as we demonstrated above for both Zipf and Clark’s Laws. 
This equation reflects the fact that interaction 𝑇)% falls off with distance from 𝑖 or 𝑗 and 
this has been called Tobler’s Law after Tobler (1970) who articulated his Law as follows: 
He said: “… everything is related to everything else, but near things are more related 
than distant things …”. The gravitational model in equation (5) can be generalised in 
many ways but variants have been derived in which all the independent variables of 
size and distance can be parameterised which makes them subject to differential 
scaling. If we now define the locational variables 𝑃) 	and 𝑃% with respect to their scale 
as 𝑃)$  and 𝑃)

&  and then use these in an augmented gravity model, equation (5) 
becomes 
 

𝑇<)% = 𝐾𝑃)$𝑃)
&𝑑)%

"* .       (6) 
 
By raising the locational variables to a power, this enables the locations to reflect 
economies or diseconomies of scale. If we scale the locational variables by 𝑎 and 𝑏 and 
distance by 𝜆, then it is easy to show that the interactions 𝑇<)%  in the new model in 
equation (6) are composed of a more complex set of functions that scale the whole 
equation by 𝑎$𝑏&𝜆"*, again a constant scalar. 
 
This brings us to our fourth type of scaling and in this context, physical growth of the 
system becomes more explicit. There are many phenomena where changes to the size 
of the objects in question lead to variants of linear growth as we defined them earlier. 
Super linear growth manifests itself if an object gets larger and some attribute of the 
object gets more than proportionately bigger due to its internal dynamics. Sub linear 
growth operates in an opposite manner for as the object grows, some attribute in 
question grows less than proportionately. This kind of growth was articulated by the 
economist Alfred Marshall (1890) in the late 19th century where he defined it implicitly 
as agglomeration: economics of scale if growth is super linear or diseconomies of scale 
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if sub linear. In various economic models, such scaling also features but in the context 
of spatial systems such as cities, it is of a particularly simple form with the best 
examples being those demonstrated by West (2017) and his colleagues for different 
city sizes with respect to changes in overall income. We will call this Marshall’s Law 
(1890) after his early discussion of economies of scale in his book Principles of 
Economics. 
 
If we define income for a city or location 𝑖 as 𝑌), and assume that the size of the driver 
of income is population 𝑃) , then the scaling relation that has been widely fitted to 
income and related population data for cities over the last 10 years or more and is 
reflected in several chapters in this book, is of the simplest form (Bettencourt et al. 
2009). We can state this as 
 

𝑌) = 𝐾𝑃)
+ ,       (7) 

 
where the parameters 𝐾 and 𝜑 act in the same way as in the other scaling relationships 
discussed above. This is the form of the so-called allometric equation that has been 
adopted in recent work on scaling in cities although there is some uncertainty about 
whether or not a better estimate would be of the income per capita against population, 
that is 
 

𝑌) 𝑃)⁄ = 𝐾𝑃)
+"# .      (8) 

 
The parameter does not vary if the form in equation (8) rather than (7) is used but the 
goodness of fit is perceived differently. In this last relationship, we introduce much 
stronger substantive issues than in the previous cases where the focus before has been 
very much on geometry, position and location. By introducing allometry , we open 
this discussion of scaling to more important issues pertaining to how city and social 
systems function. In this research, we will not pursue this further for others writing in 
this book will take up and elaborate these themes. To round out our discussion here, 
we will now demonstrate empirically how we might begin to estimate the various 
relationships we have presented.  
 
 
3 Demonstrating Scaling for City Systems and Systems of Cities  
 
The four relationships that we have just introduced are applicable generically to many 
types of system and although our focus has been on cities and regions, the ideas do 
not need to be developed for spatial systems per se. For example, rank size 
relationships are widely applicable to firm sizes, income distributions, and large 
language models while urban density functions pertain to many systems where 
diffusion of a rapidly decaying emission around some source needs to be modelled. 
Gravitational models clearly apply to how people interact within cities but they are 
applicable to information, demographic migration, and energy flows as well as to trips 
and traffic. Last but not least, allometric relations pertain directly to animal 
morphologies as well as to a variety of economic and infrastructural elements that 
make up the wider environment. 
 
In the rest of this chapter, we will apply each of these relations to the UK urban system 
which is defined at the level of census tracts known as Middle-layer Super Output 
Areas (MSOAs) of which there are 8436 in England, Scotland and Wales which have 
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an average population of 7791 and average employment of 2378. These are much 
smaller than the 63 cities in the UK greater than 110,000 population in 2023 but they 
represent an elemental unit against which we can test for the existence of distributions 
which scale with their size. The fact that Britain is an island economy and that it is 
almost entirely urbanised, introduces a degree of uniformity into its spatial 
morphology that mirrors classic industrial cities and city regions. In the examples that 
follow, we define ‘population’ as total workplace employment from the 2011 
Population Census which we consider mirrors classical urban structure much better 
than the distribution of residential population defined from a total head count. 
 
The first relationship we present is based on the 8436 MSOAs which we rank in terms 
of employment from the largest zone (in the City of London, the square mile) which 
has 325,874 employees to the smallest which has 14. In fact, in these examples, we will 
use employment density which assumes that employment exists at a point location 
and in this way we can assume that the unit of analysis – the employment zone (or the 
‘city’) – is dimensionless, that is, it is normalised to account for area. Most rank size 
analyses of locational distributions such as population are usually done on entire 
countries – systems of cities – where cities are defined according to geometric 
considerations and density thresholds, so the analysis we indicate here is unusual in 
that our zones are not cities. Nevertheless we consider them to be competitors of one 
another for resources, notwithstanding the well-known problems of defining their 
physical and socio-economic boundaries (Arcaute et al., 2016).  
 
Our first application is to fit the rank size equation 𝑃! = 𝐾𝑟"$ to the ranked MSOA 
data (𝑟 = 1, 2, 3, … , 8436)  which are ordered from the largest to the smallest 
employment density zone. In fact what we plot in Figures 1 (a) and (b) are the inverse 
power equation 𝑃! = 𝐾𝑟"$  and its logarithmically transformed equivalent, log 𝑃! =
log𝐾 − 𝛼 log 𝑟. Noting that the fit of the equation to the observed employment density 
is fairly good but modest with an 𝑅, = 0.844, it is worth making the point that not 
much analysis of rank size at a disaggregate scale has ever been accomplished. In fact 
Figure 1(b) illustrates that the long tail (to the right side of the graph) distorts the rank 
size linearity considerably and the heavy tail (to the left side of the graph) reduces the 
slope even further. Were we to chop off most of the long tail upwards from rank 𝑟 =
1000, the slope looks much more like Zipf’s Law with an 𝑅, = 0.935 but these results 
suggests that there are many, many different distributions which are defined at 
different spatial scales that resemble rank size. Moreover as we begin to trim the tails 
to increase linearity, then the nature of the system that such scaling is applicable to 
begins to change. To an extent, this probably implies that estimates of this kind are 
not necessarily good measures of the dynamics of rank size but simply evidence of the 
fact that systems with limited resources inevitably always form an equilibrium which 
can be described by Zipf’s Law.  
 
In Figure 1(b) we also show the pure rank size rule normalised to ensure that the 
intercept of the function is the maximum employment density. The straight line thus 
models the equation log 𝑃! = log𝑃# − log 𝑟 and this shows quite clearly the problem 
with the tails. Although our first scaling law is based on the classic inverse power, 
there are several ways of defining this scaling associated with the spatial distribution 
of activities such as employment and their densities. Instead of ranking the size of 
activities from largest to smallest where the rank is equally spaced as 𝑟 = 1, 𝑟 = 2, 𝑟 =
3,…, we order these sizes according to their location. In this application, we define 
location as the distance from central London where we define the first distance 𝑑# =
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0.5 as the average distance within the MSOA which is Charing Cross. With all 8436 
locations measured with respect to this zone, and with these distances ordered from 
the smallest to largest 𝑑# ≤	𝑑, ≤	𝑑-…,	we can examine the distribution of activities 
𝐸# ≤	𝐸, ≤	𝐸-…, and infer whether or not this distribution scales. Remember that in 
the rank size rule, activities are ranked from largest to smallest but in this second 
application, it is the distances that are ranked. In short this second application changes 
the order from size to distance where we plot rank and distance on the same 
horizontal axes. The most important issue here is that this transfer focuses the analysis 
on the morphology of the system in that its geometry – ranking the distance associated 
with the relevant activity at that location – provides an alternate way of looking at the 
same data, the distribution of employment densities in this case. 
 
 
a b 

  
c d 

  
 

Figure 1: Classic Scaling Relationships a) and b) Rank Size, and c) and d) Rank Distance 
 
 

In Figure 1(c), we plot the employment density 𝐸%  against what we call the rank 
distance 𝑑%. Whereas in the rank size of employment densities in Figures 1(a) and (b), 
there is nothing in this distribution to link it to the morphology of employment 
densities but when we use rank distances, it is extremely clear that the distribution of 
cities in Britain measured as their distance from London, mirrors the hierarchy of the 
city system that is well known. In Figure 1(c), London stands out as the origin of the 
UK urban system as a massive density. 240 kilometres distant from London, 
Birmingham is located, while at 300 kms Manchester can be clearly identified. Within 
these distances, West Yorkshire and then Newcastle can be located before the last big 
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urban agglomeration Glasgow-Edinburgh which is some 550 kms from London. In 
Figure 1(d), we plot the logarithmic transformation, log 𝑃% = log𝐾 − 𝛼 log 𝑑% but this 
transformations masks the morphology. The further away from London, the wider 
the variation in densities and at greater distances from the capital, the employment 
density falls dramatically. In fact there is a hidden ‘rank size’ here if we regress log 𝑃% 
against log 𝑑% with the slope estimated as 𝛼 = −0.439 but with the 𝑅, falling to 0.088.  
 
The second relationship that we have defined relates density and distance to activity 
distributions such as employment and population in the manner formulated by Clark 
(1951) that we introduced previously. We have already defined these activities with 
respect to their distance from the UK’s capital London but to demonstrate urban 
density scaling, we have defined rings of equal distance from the core Charing Cross 
in bands of 1 km distance. In each annulus, we add the total employment in the 
relevant MSOAs that fall predominantly in each band and then divide by the area of 
the annulus to extract the density. As we begin at the core point and then move 
successively out from London, we eventually reach the outer annulus some 1018 kms 
from London which includes the last zone number 8436. This method smooths the 
variations in density and produces a much cleaner picture of density variation in the 
UK. To an extent. it is an alternative picture of the densities that we plot in Figure 1(c) 
and (d). However, as we move past 400 kms from London, we encounter annuli which 
have no employment associated with them and it is therefore not possible to plot these 
effectively in automated way. We therefore restrict our visual analysis to this limit 
which does not quite include urban Scotland although this is far enough away to make 
little difference to the overall scaling implied in these plots. 
 
 
a b 

  
  

Figure 2: Urban Density Profiles for London a) Inverse Power b) Logarithmic 
Transformation 

 
 
We show the employment density profile in Figure 2(a) which reveals a very clear 
inverse power law scaling based on 𝑃% = 𝐾𝑑%"$. The density falls dramatically within 
the first 50 rings up to 50 kms as we show in the inset. To examine the stability of the 
relationship up to 400 kms from London, we plot the logarithmic transformation log 
𝑃% = log𝐾 − 𝛼 log 𝑑% in Figure 2(b) which reveals that the density accords to Clark’s 
Law up to about 30 kms from the centre (Charing Cross) with an 𝑅, = 0.958.	From 
then on, the variations get greater although over the entire system, the fit is good. 
From Figure 2(b), the slope of the function is 𝛽 = −0.729 while the variance explained 
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falls to about 0.379. Figure 2(b) can be interpreted as a continuous equivalent of the 
rank distance relationship that links Clark’s to Zipf’s Law. 
Our third scaling involves the way patterns of interaction between zones that we refer 
to as origins and destinations scale with respect to the measure of impedance or 
deterrence between locations. We are not able to demonstrate this here in any quick 
and simple manner but it is intrinsic to the kind of scaling that is reflected in the model 
shown in equation (5). This model is the workhorse that we have developed for the 
urban system based on the island of Britain where the trips between origins and 
destinations are simulated using a model where the inverse power law has been 
replaced with the negative exponential that is scaling in a somewhat different manner. 
Then the generic model is  
 

𝑇)% = 𝐸) 𝑃%exp	(−𝛾𝑑)% ) ∑ 𝑃%exp	(−𝛾𝑑)% )%T  ,    (6) 
 
where 𝛾 is the scaling parameter, 𝐸) is the employment at the origin zone 𝑖 and 𝑃% is 
the employment at the destination zone 𝑗. The model we have built is in fact further 
disaggregated by different travel modes and an appropriate way of thinking about 
this to assume that the model is equation (6) is fitted separately to each of three modes 
of travel where the parameter values for car, bus and rail are estimated as 0.131, 0.072, 
and 0.064. When we aggregate all these trips over all modes, we can work out an 
average flow from any zone to all others and plot these vectors for each zone, giving 
the picture below in Figure 3 which clearly shows that the cities in Britain scale 
according to size (Batty and Milton, 2021). The picture is still impressionistic but it 
provides a glimpse of the fractal structure of flows that make up the urban system. 
 
 
 

 
 

Figure 3: Spatial Interactions Patterns That Scale Over City Size 
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4 Urban Allometry and Scale 
 
Our fourth and last scaling relation that we introduce here turns the relationship from 
a negative (inverse) one to a positive one in that it concerns the attributes of a variable 
as it changes in size. As cities get bigger for example, they change qualitatively as we 
noted earlier when we introduced the idea of allometry. The notion that one variable 
changes at a different rate from another but that they are intrinsically linked lies at the 
core of this relation. In the examples we have identified so far, we have not discussed 
the need for the units that we are explaining in terms of employment and population 
locations to be internally consistent. In fact the rank size relation is largely applied to 
cities that are defined to be quite separate from one another and when it comes to 
positive scaling, it is essential that the units are integral objects which exist in their 
own right. In the examples so far, we have used partitions of cities into smaller output 
area units but when it comes to comparing attributes such as different features of their 
size, we need to ensure that the units themselves are relatively independent from one 
another. In this sense, here we need to ensure that we are dealing with well-defined 
cities. Rather than 8436 MSOAs, we will now use the 63 cities defined for the UK by 
the Centre for Cities (CfC, 2023) which are cities greater than 110,000 in population in 
2023 which can be easily compared with one another. 
 
The idea of allometry is captured in equation (7) which implies that the attribute 𝑌) of 
the object 𝑖 in question – a city, say – scales in a positive fashion with city size 𝑃)

+. The 
parameter 𝜑 is assumed to be positive; if it is between 0 and 1, the attribute increases 
sub linearly with city size but at a decreasing rate whereas if 𝜑	is greater than 1, the 
increase is super linear with city size, the attribute growing more than 
proportionately. As we noted above, this implies that growth realises economies or 
diseconomies of scale. This is the relation first articulated by Marshall (1890) and 
explored extensively by Bettencourt et al. (2007) which has motivated many of the 
chapters in this book. In Figure 4(a), we show the scaling relationship between the 
total weekly wages and population in the CfC data base and what is striking is that 
there is hardly any evidence of scaling; in short, Figure 4(a) implies that wages per 
capita barely change as city size increases. It is also clear that London is a clear outlier 
with a substantial premium in terms of being associated with increasing wages 
compared to all the other cities in the data set. 
 
 
a b 

  
  

Figure  4: Linear and Super Linear Scaling for the Biggest 63 Cities in the UK 
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In terms of city size, an old argument that has gradually gained pace during the last 
100 years is the idea that as a city grows in size, its economies of scale outweigh its 
diseconomies. This is best seen in terms of the fact that as more and more people come 
to interact in cities, then economies of scale are generated in proportion to the positive 
power of population, that is in proportion to population whose scaling is positive, 
𝑃)$ , 𝛼 > 1. Diseconomies such as congestion and access to specialist facilities do not 
appear to cancel out economies. Measures of this positive power are revealed in terms 
of the relative growth of the service sector, measures of innovation in technology such 
as the acquisition of patents, and other measures of the knowledge base and the 
concentration of internetworking facilities that increase the accessibility of every 
larger cities in the global economy. Figure 4(b) demonstrates that this super liner 
scaling is applicable to the CfC data for intensive business services which are highly 
clustered in the largest cities. The CfC database reveals that some of these speculations 
are born out for a rather limited number of the largest UK cities in contrast to evidence 
from other parts of the world where positive super linear scaling seems to be much 
more evident (Bettencourt, 2021). 
 
 
5 Conclusions: A Cornucopia of Scaling 
 
There are however a number of open questions that are key challenges to be resolved 
in terms of any theory of scaling and these relate to how we define the units of analysis 
that we are explaining with respect to various of their attributes (Arcaute et al., 2016). 
Cities are notoriously hard to define with hard and fast boundaries particularly in an 
increasingly global world where many of the world’s largest cities are dominated by 
waves of international migration. Many industries from primary to quaternary to the 
most esoteric information services which form the fast growing quinary sector are 
physically diffuse and spread across many cities and countries. This makes much 
economic activity hard to ground at unambiguous locations. The other feature that we 
have not explored is how city size relates to temporal scaling. Most of our focus has 
been on cities in equilibrium although in terms of economies of agglomeration, there 
are implicit relations that describe how cities change their scaling as they grow. Very 
little work has been developed in this regard but how we can explain for example how 
agglomeration economies defined by allometric parameters shift from lower to higher 
value as cities grow in size represents a serious challenge that any robust theory of 
scaling must surely embrace. These are all problems for future research. 
 
What we need is a theory or theories that tie all these different scaling relations 
together. To do this, such a theory which would be based on the geometry and 
morphology of city systems and systems of cities, ideas first championed many years 
ago by Berry (1964) in an inspiring article but barely followed up in the intervening 
years.  This as Berry argued must also be intrinsically linked to spatial economic 
theories where geometry is implicit, to ideas about how location theories and urban 
economies function. And all this must be set in a landscape of globalisation, where the 
scaling relations that we have defined here are under continual transformation. 
Glimpses of this theory are contained in the pages of this book and collectively they 
point to a greater understanding of how scaling can be used to define ways in which 
we can develop more sustainable and robust approaches to the design of better cities.  
 
 
 
 



 12 

References 
 
Arcaute, E., Molinero, C., Hatna, E., Murcio, R., Vargas-Ruiz, C., Masucci, A. P., and 
Batty, M. Cities and Regions in Britain through Hierarchical Percolation. Royal Society 
Open Science, 3 150691; DOI: 10.1098/rsos.150691, 2016. 
 
Batty, M. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based 
Models, and Fractals. Cambridge MA :The MIT Press, 2005. 
 
Batty, M. and Milton, R. A New Framework for Very Large-Scale Urban Modelling. 
Urban Studies, 58 (15), 3071–3094, 2021. 
 
Batty, M. and Longley, P. A. Fractal Cities: A Geometry of Form and Function. London 
and San Diego CA: Academic Press, 1994. 
 
Berry, B. J. L. Cities as Systems Within Systems of Cities, Papers of the Regional Science 
Association, 13, 146–163, 1964. 
 
Bettencourt, L. M. A. Introduction to Urban Science. Cambridge MA :The MIT Press, 
2005. 
 
Bettencourt, L. M. A., Lobo, J., Helbing, D., , and West, G. Growth, Innovation, Scaling, 
and the Pace of Life in Cities. Proceedings of the National Academy of Sciences, 104 (17) 
7301-7306, 2007. 
 
CfC Cities Data Tool, available at  
https://www.centreforcities.org/data-tool/#graph=map&city=show-all London: 
Centre for Cities, 2023. 
 
Clark, C. Urban Population Densities. Journal of the Royal Statistical Society, Series A 
(General), 114, 490–496, 1951. 
 
Koffka, K. The Principles of Gestalt Psychology. London: Routledge and Kegan Paul, 
1935. 
 
Marshall, A. Principles of Economics. London: MacMillan Company, 1890. 
 
Tobler, W. A Computer Movie Simulating Urban Growth in the Detroit Region. 
Economic Geography, 46(Supplement), 234–240, 1970. 
 
West, G. Scale: The Universal Laws of Life and Death in Organisms, Cities and Companies. 
London: Weidenfeld and Nicolson, 2017. 
 
Zipf, G. K. Human Behavior and the Principle of Least Effort. Cambridge MA: Addison-
Wesley, 1949. 

https://www.centreforcities.org/data-tool/#graph=map&city=show-all

