城市科学视角下的时空智能与新时期城市精细化 治理:理论、方法与应用途径
Spatiotemporal Intelligence and Refined Urban Governance in the New Era: Theories, Methods, and Application Approaches from an Urban Science Perspective
许立言
北京大学建筑与景观设计学院 研究员,博士生导师,xuliyan@pku.edu.cn
摘要: 城市的精细化治理是国家治理体系与治理能力现代化的重要维度,时空智能在该事业中扮演重要角色。从城市科学的 角度,结合新时期的目标与任务,试论述以时空智能支持城市精细化治理的理论基础、方法框架和应用途径。首先扼要 梳理时空智能研究的谱系,并指出既有城市科学研究分别从地理模式、机制和调控的角度出发,不仅为城市精细化治 理建立了充分的可行性基础,而且设定了理论上所能达到的目标;大量方法研究亦为城市空间格局分析、交互和时间 动态规律挖掘、问题归因和趋势预测,以及运筹优化提供了丰富的工具库。进一步地,通过具体案例展示上述时空智能 工具在从城市态势感知、空间管理、响应处置、预判预警到体制机制建设的城市精细化治理完整闭环中的应用途径。
Abstract: Refined urban governance is an important dimension of the modernization of the national governance system and governance capacity, and spatiotemporal intelligence plays a significant role in this endeavor. This paper, from the perspective of urban science and considering the objectives and tasks of the New Era, attempts to discuss the theoretical basis, methodological framework, and application pathways for spatiotemporal intelligence to support urban governance. This paper first briefly reviews the research spectrum of spatiotemporal intelligence and points out that existing urban science research has established a solid foundation for urban governance from the perspectives of geographical patterns, mechanisms, and regulation, while also setting theoretical goals that can be achieved. Many methodological studies have also provided a rich toolkit for urban spatial pattern analysis, interaction and temporal dynamic pattern mining, problem attribution and trend prediction, as well as operational optimization. This paper further demonstrates, through specific cases, the application pathways of the aforementioned spatiotemporal intelligence tools in the complete closed-loop of urban governance, from urban situation awareness, spatial management, response and disposal, prediction and warning, to institutional building.
关键词:时空智能;城市科学;城市治理;精细化治理;社会感知
Keyword: spatiotemporal intelligence; urban science; urban governance; refined governance; social sensing
中图分类号:TU981
文献标识码: A
陆军. 城市精细化管理指数的构建与应用——
以北京市为例[J]. 城市管理与科技,2021,22
(2):10-13.
LU Jun. Construction and application of urban refined management index[J]. Urban Management
and Science & Technology, 2021, 22(2): 10-13.
BATTY M. The new science of cities[M]. Cambridge:
MIT Press, 2013.
GOODCHILD M F. Reimagining the history of GIS[J]. Annals of GIS, 2018, 24(1): 1-8.
CLAUDEL C, MATTHEW R. The city of tomorrow: sensors, networks, hackers, and the future of urban
life[M]. New Haven: Yale University Press, 2016.
BATTY M, AXHAUSEN K W, GIANNOTTI F, et al. Smart cities of the future[J]. The European Physical Journal Special Topics, 2012, 214(1): 481-518.
ZHANG H, GONG Z, THILL J C. A review on urban modelling for future smart cities[C]//MENG
X, ZHANG X, GUO D, et al. Spatial data and
intelligence. Singapore: Springer, 2024: 346-355.
BARTHELEMY M. The structure and dynamics of cities[M]. Cambridge: Cambridge University
Press, 2016.
BETTENCOURT L M A. The origins of scaling in
cities[J]. Science, 2013, 340(6139): 1438-1441.
LEGENDRE P, FORTIN M J. Spatial pattern and
ecological analysis[J]. Vegetatio, 1989, 80(2): 107-
138.
GOODCHILD M F. Twenty years of progress: GIScience in 2010[J]. Journal of Spatial Information
Science, 2010(1): 3-20.
ZIPF G K. Human behavior and the principle of
least effort: an introduction to human ecology[M].
Cambridge: Addison-Wesley, 1949.
VERBAVATZ V, BARTHELEMY M. The growth
equation of cities[J]. Nature, 2020, 587(7834): 397-401.
GONZÁLEZ M C, HIDALGO C A, BARABÁSI
A L. Understanding individual human mobility patterns[J]. Nature, 2008, 453(7196): 779-782.
SCHLÄPFER M, DONG L, O'KEEFFE K, et al.
The universal visitation law of human mobility[J].
Nature, 2021, 593(7860): 522-527.
ALESSANDRETTI L, ASLAK U, LEHMANN S. The scales of human mobility[J]. Nature, 2020,
587(7834): 402-407.
MAZZOLI M, MOLAS A, BASSOLAS A, et al. Field theory for recurrent mobility[J]. Nature Communications, 2019, 10: 1-11.
ALESSANDRETTI L, SAPIEZYNSKI P, SEKARA V, et al. Evidence for a conserved quan-
tity in human mobility[J]. Nature Human Behaviour,
2018, 2(7): 485-491.
XU F, LI Y, JIN D, et al. Emergence of urban growth patterns from human mobility behavior[J].
Nature Computational Science, 2021, 1(12): 791-
800.
PEARL J. Causal inference in statistics: an overview[J]. Statistics Surveys, 2009, 3: 96-146.
ANGRIST J D, PISCHKE J S. The credibility revolution in empirical economics: how better
research design is taking the con out of econo-
metrics[J]. Journal of Economic Perspectives, 2010,
24(2): 3-30.
SONG C, KOREN T, WANG P, et al. Modelling the scaling properties of human mobility[J]. Nature
Physics, 2010, 6(10): 818-823.
PAPPALARDO L, SIMINI F, RINZIVILLO S, et al. Returners and explorers dichotomy in human
mobility[J]. Nature Communications, 2015, 6: 1-8.
SONG C, QU Z, BLUMM N, et al. Limits of
predictability in human mobility[J]. Science, 2010,
327(5968): 1018-1021.
BARTHELEMY M. Stochastic equations and cities[J]. Reports on Progress in Physics, 2023,
86(8): 084001.
PENNY D, ZACHRESON C, FLETCHER R, et al. The demise of Angkor: systemic vulnerability of urban infrastructure to climatic variations[J].
Science Advances, 2018, 4(10): eaau4029.
GAO J, BARZEL B, BARABÁSI A-L. Universal
resilience patterns in complex networks[J]. Nature, 2016, 530: 307-312.
ZHAO J, LI D, SANHEDRAI H, et al. Spatio-
temporal propagation of cascading overload failures in spatially embedded networks[J]. Nature
Communications, 2016, 7: 3-8.
BROCKMANN D, HELBING D. The hidden geometry of complex, network-driven contagion phenomena[J]. Science, 2013, 342(6164): 1337-
1342.
JI J, WANG J, JIANG Z, et al. STDEN: towards physics-guided neural networks for traffic flow prediction[J]. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 2022, 36(4): 4048-4056.
PAPADOPOULOS F, KITSAK M, SERRANO M
Á, et al. Popularity versus similarity in growing
networks[J]. Nature, 2012, 489(7417): 537-540.
SERRANO M Á, KRIOUKOV D, BOGUÑÁ M. Self-similarity of complex networks and hidden metric spaces[J]. Physical Review Letters, 2008, 100(7): 078701.
CROSBY H, DAMOULAS T, JARVIS S A. Embedding road networks and travel time into
distance metrics for urban modelling[J]. Inter-
national Journal of Geographical Information Science, 2019, 33(3): 512-536.
裴韬,舒华,郭思慧,等. 地理流的空间模式:概
念与分类[J]. 地球信息科学学报,2020,22(1):
30-40.
PEI Tao, SHU Hua, GUO Sihui, et al. The
concept and classification of spatial patterns of geographical flow[J]. Journal of Geo-information Science, 2020, 22(1): 30-40.
ZHENG M, GARCÍA-PÉREZ G, BOGUÑÁ M,
et al. Geometric renormalization of weighted net-
works[J]. Communications Physics, 2024, 7(1): 97.
LIU X, GONG L, GONG Y, et al. Revealing travel
patterns and city structure with taxi trip data[J]. Journal of Transport Geography, 2015, 43: 78-90.
ZHU D, HUANG Z, SHI L, et al. Inferring spatial
interaction patterns from sequential snapshots of
spatial distributions[J]. International Journal of Geographical Information Science, 2018, 32(4): 783-805.
CHAMI I, YING R, RÉ C, et al. Hyperbolic graph
convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2019,
32(1): 1-20.
FOTHERINGHAM A S, CRESPO R, YAO J. Geographical and temporal weighted regression (GTWR)[J]. Geographical Analysis, 2015, 47(4): 431-452.
KANG C, QIN K. Understanding operation behaviors of taxicabs in cities by matrix factoriza-
tion[J]. Computers, Environment and Urban Systems, 2016, 60: 79-88.
TAN X, HUANG B, BATTY M, et al. The spatiotemporal scaling laws of urban population
dynamics[J]. Nature Communications, 2025,
16(1): 2881.
XU F, WANG Q, MORO E, et al. Using human mobility data to quantify experienced urban
inequalities[J/OL]. Nature Human Behaviour, 2025.
https://doi.org/10.1038/s41562-024-02079-0.
JIANG S, FERREIRA J, GONZALEZ M C. Activity-based human mobility patterns inferred from mobile phone data: a case study of
Singapore[J]. IEEE Transactions on Big Data, 2016, 3(2): 208-219.
LIU X, KANG C, GONG L, et al. Incorporating spatial interaction patterns in classifying and understanding urban land use[J]. International Journal of Geographical Information Science,
2016, 30(2): 334-350.
VAZIFEH M M, ZHANG H, SANTI P, et al. Optimizing the deployment of electric vehicle charging stations using pervasive mobility data[J].
Transportation Research Part A: Policy and
Practice, 2019, 121: 75-91.
SANTI P, RESTA G, SZELL M, et al. Quantifying
the benefits of vehicle pooling with shareability networks[J]. Proceedings of the National Academy of Sciences, 2014, 111(37): 13290-13294.
JIANG H, XU L, LI J, et al. Enhancing urban
resilience through spatial interaction-based city management zoning[J]. Annals of the American Association of Geographers, 2024, 114(6): 1310-
1329.
XU L, TANG J, JIANG H, et al. MNCD-KE: a novel framework for simultaneous attribute- and
interaction-based geographical regionalization[J]. International Journal of Geographical Information
Science, 2024, 38(10): 2148-2182.
ALETA A, MARTÍN-CORRAL D, BAKKER M A, et al. Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas[J]. Proceedings of the National
Academy of Sciences, 2022, 119(26): 1-8.
HOSSEINI E, GHAFOOR K Z, SADIQ A S, et al. COVID-19 optimizer algorithm, modeling and
controlling of coronavirus distribution process[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(10): 2765-2775.
BOGUÑÁ M, KRIOUKOV D, CLAFFY K C. Navigability of complex networks[J]. Nature Physics, 2009, 5(1): 74-80.
PEREIRA G V, PARYCEK P, FALCO E, et al. Smart governance in the context of smart cities: a literature review[J]. Information Polity, 2018, 23(2): 143-162.
SILVA B N, KHAN M, HAN K. Towards sustainable smart cities: a review of trends, architectures,
components, and open challenges in smart
cities[J]. Sustainable Cities and Society, 2018, 38: 697-713.
LIU Y, LIU X, GAO S, et al. Social sensing: a new approach to understanding our socioeconomic
environments[J]. Annals of the Association of American Geographers, 2015, 105(3): 512-530.
许立言. 数据偏误、行为选择与政策助推——行
为科学视角下城市信息治理的陷阱和机遇[J].
国际城市规划,2024,39(1):41-50.
XU Liyan. Data bias, behavioral choices, and policy nudge: pitfalls and opportunities in urban
information governance from a behavioral science
perspective[J]. Urban Planning International,
2024, 39(1): 41-50.
BRUNSDON C, FOTHERINGHAM A S, CHARLTON M E. Geographically weighted regression: a method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996, 28(4): 281-298.
ZHU Y, YE Y, ZHANG S, et al. DiffTraj: generating GPS trajectory with diffusion probabilistic model[C]//Advances in Neural
Information Processing Systems. 2023: 36.
GOODCHILD M F. Citizens as sensors: the world
of volunteered geography[J]. GeoJournal, 2007,
69(4): 211-221.
ZHU D, ZHANG F, WANG S, et al. Understanding
place characteristics in geographic contexts through
graph convolutional neural networks[J]. Annals of the American Association of Geographers, 2020, 110(2): 408-420.
TANG J, XU L, YU H, et al. A dataset of multi-
level street-block divisions of 985 cities world-
wide[J]. Scientific Data, 2025, 12(1): 456.
CHENG X, WANG Z, YANG X, et al. Multi-scale
detection and interpretation of spatio-temporal anomalies of human activities represented by timeseries[J]. Computers, Environment and Urban Systems, 2021, 88: 101627.
SI Y, XU L, PENG X, et al. Comparative diagnosis of the urban noise problem from infrastructural and social sensing approaches: a case study in Ningbo, China[J]. International Journal of Environmental Research and Public Health, 2022, 19(5): 2809.
LI C, HUANG Y, SHEN Y, et al. Spatiotemporal patterns and mechanisms of street vending from the
social sensing perspective: a comparison between law-enforcement reported and residents complain events[J]. Cities, 2022, 124: 103597.
PENG X, LI Y, SI Y, et al. A social sensing approach for everyday urban problem-handling with
the 12345-complaint hotline data[J]. Computers, Environment and Urban Systems, 2022, 94: 101790.
KITCHIN R. The real-time city? Big data and smart urbanism[J]. GeoJournal, 2014, 79(1): 1-14.
彭兰. 假象、算法囚徒与权利让渡:数据与算法
时代的新风险[J]. 西北师大学报(社会科学版),
2018,55(5):20-29.
PENG Lan. Illusion, prisoner of algorithm, and transfer of rights: the new risks in the age of data
and algorithm[J]. Journal of Northwest Normal University (Social Sciences), 2018, 55(5): 20-29.
邓凯,吴灏文. 数字化助推:一种智慧城市的公
共政策视角[J]. 决策探索,2020(8):11-15.
DENG Kai, WU Haowen. Digital nudging: a public policy perspective on smart cities[J]. Policy
Research & Exploration, 2020(8): 11-15.
姜晓萍,吴宝家. 警惕伪创新:基层治理能力现
代化进程中的偏差行为研究[J]. 中国行政管理,
2021(10):41-48.
JIANG Xiaoping, WU Baojia. Warning against pseudo-innovation: study on deviant behavior in the process of modernization of local governance
capacity[J]. Chinese Public Administration, 2021(10): 41-48.
LEFEBVRE H. The production of space[M]. Paris: Éditions Anthropos, 1974.