轨道站点地区居民出行方式结构差异及影响因素* ——基于手机信令数据的武汉实证
Travel Mode Structure and Influencing Factors in Rail Station Areas: An Empirical Study of Wuhan Based on Mobile Signaling Data
徐 涛
武汉理工大学土木工程与建筑学院 副教授,硕士生导师,xutaowhu@126.com
张云祥
武汉理工大学土木工程与建筑学院 硕士研究生
摘要: 我国城市轨道交通建设促进居民绿色出行行为的效应和机制仍不明晰。基于手机信令数据,分析武汉市轨道站点地区 居民出行方式构成空间差异及不同交通方式分担率的影响因素,探讨站点地区分类型规划调控策略,主要得出以下结 论:第一,武汉市轨道交通站点地区的常规公交、轨道交通分担率与慢行分担率呈现此消彼长的态势,轨道交通与常规 公交分担率呈协同变化趋势,而小汽车分担率空间差异不明显。第二,从影响要素来看,轨道站点网络中心性特征对促 进人口选择公交出行、减少小汽车出行具有显著积极作用,建成环境要素对慢行分担率、轨道交通分担率影响作用呈 现显著差异,小汽车出行分担率主要受人口社会经济特征影响。第三,将城市轨道交通站点地区聚类划分为3大类、8个 子类型站点,出行方式构成和关键影响因素具有差异,探讨针对性规划策略以提升轨道站区绿色交通效应。
Abstract: The effects and mechanisms of urban rail transit development on promoting residents' active travel behaviors remain unclear. Based on mobile phone signaling data, this study analyzes the spatial differences in travel mode structure and influencing factors of mode share rates in Wuhan's rail station areas, proposing planning strategies. The main findings are as follows. First, conventional bus and rail transit mode shares in Wuhan's station areas exhibit a competitive relationship with non- motorized transport (NMT) shares, while demonstrating synergistic trends between rail and bus modes. Together, they form the core of public transportation dominance, whereas spatial variation in private car usage remains statistically insignificant. Second, network centrality metrics of rail stations significantly promote public transport adoption and reduce car dependency. Built environment characteristics differentially influence NMT and rail transit shares, while car usage primarily correlates with socioeconomic attributes. Third, through hierarchical clustering analysis based on travel mode structure and key influencing factors, three major categories with eight subtypes of stations are identified. To enhance the traffic regulation effect of rail transit, targeted TOD planning strategies should be implemented.
关键词:轨道交通站点地区;出行方式结构;影响因素;手机信令数据
Keyword: rail station areas; travel mode structure; influencing factors; mobile signaling data
中图分类号:TU984
文献标识码: A
胡敏. 轨道交通对城市空间布局的影响探析[J].
现代城市研究,2007(11):34-39.
HU Min. The effects of rail transit on urban spatial
patterns[J]. Modern Urban Research, 2007(11): 34-39.
CHATMAN D G. Does TOD need the T?: on the
importance of factors other than rail access[J].
Journal of the American Planning Association, 2013(1): 17-31.
TAO S, CHENG L, HE S, et al. Examining the non-linear effects of transit accessibility on daily trip duration: a focus on the low-income
population[J]. Journal of Transport Geography, 2023(109): 103600.
黄晓燕,曹小曙,殷江滨,等. 城市轨道交通和建
成环境对居民步行行为的影响[J]. 地理学报,
2020(6):1256-1271.
HUANG Xiaoyan, CAO Xiaoshu, YIN Jiangbin, et al. The influence of urban transit and built environment on walking[J]. Acta Geographica Sinice, 2020(6): 1256-1271.
LUND H, WILLSON R W, CERVERO R. A re-evaluation of travel behavior in California TODs[J]. Journal of Architectural and Planning Research, 2006(3): 247-263.
SPEARS S, BOARNET M G, HOUSTON D. Driving reduction after the introduction of light rail transit: evidence from an experimental-control
group evaluation of the Los Angeles Expo Line[J].
Urban Studies, 2017(12): 2780-2799.
XIE L. Automobile usage and urban rail transit expansion: evidence from a natural experiment in
Beijing, China[J]. Environment and Development Economics, 2016(5): 557-580.
SUN B, ERMAGUN A, DAN B. Built environ-
mental impacts on commuting mode choice and
distance: evidence from Shanghai[J]. Transportation Research Part D: Transport and Environment, 2017(52): 441-453.
BAUTISTA-HERNANDEZ D A. Mode choice
in commuting and the built environment in
Mexico City. Is there a chance for non-motorized travel?[J]. Journal of Transport Geography, 2021(92): 103024.
刘美银,王建伟. 考虑城市客运结构优化的城市
轨道交通定价方法研究[J]. 交通运输系统工程
与信息,2017(3):53-59.
LIU Meiyin, WANG Jianwei. Pricing method of urban rail transit considering the optimization
of passenger transport structure[J]. Journal
of Transportation Systems Engineering and Information Technology, 2017(3): 53-59.
郭亮,贺慧. 城市交通结构优化与土地利用模式
相关性的比较[J]. 城市规划学刊,2009(5):
77-82.
GUO Liang, HE Hui. Comparative study on the relevance of structural optimization of urban traffic
and land-use patterns[J]. Urban Planning Forum,
2009(5): 77-82.
CHATMAN D G. How density and mixed uses at
the workplace affect personal commercial travel and commute mode choice[J]. Transportation Research Record, 2003(1): 193-201.
吴凡,石飞. 城市路网布局结构对公共交通出行
的影响研究[J]. 城市规划学刊,2017(4):121.
WU Fan, SHI Fei. Effects of urban road network layout structure on public transportation trips[J].
Urban Planning Forum, 2017(4): 121.
CHEN F, WU J, CHEN X, et al. Vehicle kilometers traveled reduction impacts of Transit-
Oriented Development: evidence from Shanghai City[J]. Transportation Research Part D: Transport
and Environment, 2017(55): 227-245.
吴娇蓉,王洋,余淼,等. 公共服务设施达标评价
与出行结构关联分析[J]. 综合运输,2020(11):
10-15.
WU Jiaorong, WANG Yang, YU Miao, et al. Correlation analysis between the evaluation
of public service facilities and the structure of
travel[J]. China Transportation Review, 2020(11): 10-15.
宋小冬,赵一夫,庞磊. 住宅区道路可穿越对公
共交通出行的便利性影响[J]. 上海城市规划,
2023(1):121-127.
SONG Xiaodong, ZHAO Yifu, PANG Lei. Road crossability in the residential area for convenience
of transit trip[J]. Shanghai Urban Planning Review, 2023(1): 121-127.
阚长城,马琦伟,党安荣,等. 街区尺度下的通勤
出行方式挖掘及其影响因子——以北京市为例
[J]. 城市交通,2020(5):54-60.
KAN Changcheng, MA Qiwei, DANG Anrong, et al. Commuting travel mode and its influencing factors at street bock scale: a case study in Beijing[J]. Urban
Transport of China, 2020(5): 54-60.
刘华斌. 手机信令数据背景下城市交通出行方式
选择辨识方法研究[D]. 北京:北京交通大学,2019.
LIU Huabin. Urban transportation modes recogni-
tion based on mobile signaling data[D]. Beijing: Beijing Jiaotong University, 2019.