都市圈跨城通勤视角下择居偏好及融城空间格局 研究* ——以长株潭都市圈为例
The Impact of Residential Choice and the Optimization of Integrated City Patterns from the Perspective of Intercity Commuting: A Case Study of the Changsha-Zhuzhou-Xiangtan Metropolitan Area
曾明哲
湖南省国土资源规划院 工程师,硕士
段香园
湖南省国土资源规划院 详细规划所技术总监,高级工程师,硕士
杨武亮
湖南省国土资源规划院 详细规划所副所长,高级工程师,硕士
刘光霞
湖南省国土资源规划院 详细规划所副所长,高级工程师,硕士
朱才华(通信作者)
河南农业大学机电工程学院 讲师,博士,zhucaihua@chd.edu.cn
摘要: 为准确理解都市圈跨城通勤者择居行为、优化都市圈融城空间结构,以长株潭都市圈为案例,建立融合多源数据的择居 偏好分析及融城空间格局识别模型。利用多源数据提取跨城通勤基础特征及驱动因子,探究跨城通勤现象的空间分布 特征;建立最优参数地理探测器模型,量化分析各因子对跨城通勤者居住地选择的影响机制;建立基于谱聚类算法的都 市圈城市融城功能区识别方法,评估并优化都市圈空间格局发展。结果表明:(1)长株潭都市圈跨城通勤者居住地分布密 度呈现南集聚北分散的多核心特征。(2) 不同维度建成环境、经济等因素对跨城通勤者居住地选择的影响程度不一,其中 区县GDP、距市界距离、小区均价、商业消费指标为核心驱动因子。(3)长株潭都市圈融城格局划分为6类功能区为最佳。
Abstract: To accurately understand the residential choice activities of intercity commuters and optimize the integrated urban spatial structure, this study takes the Changsha-Zhuzhou-Xiangtan metropolitan area as a case study. A model is developed to analyze residential preferences and delineate integrated urban spatial patterns by integrating multi-source data. It employs multi-source spatial data to extract the basic features and driving factors of intercity commuting. The study delves into the spatial distribution patterns of intercity commuting phenomena. Furthermore, an Optimal Parameter-based Geographical Detector (OPGD) model is established to quantify the impact mechanisms of various factors on the residential choices of inter-city commuters. A method for dividing the functionality of urban integration in metropolitan areas based on spectral clustering is also established to evaluate and optimize the spatial pattern development of the metropolitan area. The results show that: ①The distribution density of intercity commuters' residences exhibits a multi-core characteristic, with agglomeration in the south and dispersion in the north. ②Factors such as spatial environment and economy, across different dimensions, exert varying degrees of influence on the residential choices of intercity commuters. Among them, district GDP, distance from the municipal boundary, average housing prices in residential areas, and commercial consumption indicators are identified as the core driving factors. ③The optimal division of the urban integration pattern identifies six categories.
关键词:跨城通勤;居住地选择;空间格局;谱聚类;最优参数地理探测器;长株潭都市圈
Keyword: inter-city commuting; residential choice; spatial pattern; spectral clustering; optimal parameter-based geographical detector; Changsha-Zhuzhou-Xiangtan metropolitan area
中图分类号:TU984
文献标识码: A
SALAS-OLMEDO M H, NOGUÉS S. Analysis of
commuting needs using graph theory and census
data: a comparison between two medium-sized
cities in the UK[J]. Applied Geography, 2012,
35(1): 132-141.
张艺帅,赵民. 我国都市圈的空间界定、特征解
析及分类探讨[J]. 城市规划学刊,2023(2):
67-76.
ZHANG Yishuai, ZHAO Min. Spatial delineation,
characteristics analysis, and classification of
China's metropolitan regions[J]. Urban Planning
Forum, 2023(2): 67-76.
钮心毅,王垚,刘嘉伟,等. 基于跨城功能联系的
上海都市圈空间结构研究[J]. 城市规划学刊,
2018(5):80-87.
NIU Xinyi, WANG Yao, LIU Jiawei, et al. Spatial
structure of Shanghai conurbation area from
perspective of inter-city functional links[J]. Urban
Planning Forum, 2018(5): 80-87.
MACKUN P. 2020 Standards for delineating core
based statistical areas[EB/OL]. (2021-07-16)
[2025-01-08]. https://www.federalregister.gov/
d/2021-15159.
林雄斌,卢源. 都市区跨区域通勤特征与影响因
素研究——以京津城际高铁为例[J]. 城市规划,
2021,45(12):104-113.
LIN Xiongbin, LU Yuan. Intercity commuting in
China's metropolitan area: the case of BeijingTianjin intercity high-speed railway[J]. City
Planning Review, 2021, 45(12): 104-113.
王睿,柯嘉,张赫. 基于职住分离的超大特大城
市交通拥堵碳排放机理研究——以天津市“郊
住城职”现象为例[J]. 上海城市规划,2023(6):
33-39.
WANG Rui, KE Jia, ZHANG He. The carbon
emission mechanism of traffic congestion in mega
cities caused by job-housing imbalance: a case
study of commuting behavior from suburban
housing to urban workplaces in Tianjin[J]. Shanghai
Urban Planning Review, 2023(6): 33-39.
赵鹏军,胡昊宇,海晓东,等. 基于手机信令数据
的城市群地区都市圈空间范围多维识别——以
京津冀为例[J]. 城市发展研究,2019,26(9):
69-79.
ZHAO Pengjun, HU Haoyu, HAI Xiaodong, et
al. Identifying metropolitan edge in city clusters
region using mobile phone data: a case study of
Jing-Jin-Ji[J]. Urban Development Studies, 2019,
26(9): 69-79.
郭亮,彭雨晴,张彪,等. 交通与土地利用要素供
给对通勤圈空间特征的协同优化机制——以武
汉市为例[J]. 现代城市研究,2024(4):117-124.
GUO Liang, PENG Yuqing, ZHANG Biao, et al.
Synergistic optimization mechanism of transportation and land use factor supply on the spatial
characteristics of commuting circle: a case study of
Wuhan[J]. Modern Urban Research, 2024(4): 117-
124.
LIU X, XIA H. Networking and sustainable development of urban spatial planning: influence of rail
transit[J]. Sustainable Cities and Society, 2023, 99:
104865.
YU M, FAN W. Accessibility impact of future high
speed rail corridor on the Piedmont Atlantic mega
region[J]. Journal of Transport Geography, 2018,
73: 1-12.
ZHOU J, MURPHY E, LONG Y. Commuting
efficiency in the Beijing metropolitan area: an
exploration combining smartcard and travel survey
data[J]. Journal of Transport Geography, 2014, 41:
175-183.
王垚,钮心毅,李志鹏. 苏沪跨城通勤的影响因
素与作用机制初探[J]. 城市规划,2023,47(2):
58-66.
WANG Yao, NIU Xinyi, LI Zhipeng. A preliminary
study on the influencing factors and mechanism
of inter-city commuting between Suzhou and
Shanghai[J]. City Planning Review, 2023, 47(2):
58-66.
VINCENT-GESLIN S, RAVALET E. Determinants
of extreme commuting. Evidence from Brussels,
Geneva and Lyon[J]. Journal of Transport Geography,
2016, 54: 240-247.
张纯,马畅. 基于租房数据的京津冀城市群跨城
通勤特征及影响因素研究[J]. 地理科学进展,
2024,43(5):841-853.
ZHANG Chun, MA Chang. Characteristics of
inter-city commuting and influencing factors in
the Beijing-Tianjin-Hebei mega-region based on
housing rental data[J]. Progress in Geography,
2024, 43(5): 841-853.
杨舒,毛保华,许奇,等. 票价水平对地铁乘客通
勤出行的影响[J]. 科学技术与工程,2021,21
(23):10068-10073.
YANG Shu, MAO Baohua, XU Qi, et al. The impact
of fare levels on commuter travel on the metro[J].
Science Technology and Engineering, 2021, 21(23):
10068-10073.
赵晖,张纯,梁晓红,等. 基于GIS空间融合技术
的北京都市圈空间识别及通勤率特征研究[J].
上海城市规划,2023(6):55-60.
ZHAO Hui, ZHANG Chun, LIANG Xiaohong,
et al. Beijing metropolitan area spatial boundary
identification and commuting rate characteristics
based on spatial merge techniques[J]. Shanghai
Urban Planning Review, 2023(6): 55-60.
SONG Y, WANG J, GE Y, et al. An optimal
parameters-based geographical detector model
enhances geographic characteristics of explanatory
variables for spatial heterogeneity analysis: cases
with different types of spatial data[J]. GIScience &
Remote Sensing, 2020, 57(5): 593-610.
席广亮,甄峰,方创琳,等. 形流融合视角的都
市圈国土空间优化与协调发展[J]. 地理学报,
2025,80(2):272-287.
XI Guangliang, ZHEN Feng, FANG Chuanglin, et
al. Territorial spatial optimization and coordinated
development of metropolitan regions from the
perspective of "form-flow integration"[J]. Acta
Geographica Sinica, 2025, 80(2): 272-287.
邵海雁,靳诚,钟业喜,等. 海口城市建成环境对
高峰期网约车通勤出行的影响——基于滴滴出
行数据[J]. 人文地理,2022,37(5):130-139.
SHAO Haiyan, JIN Cheng, ZHONG Yexi, et al.
The impact of Haikou's urban built environment
on online car-hailing commuting during peak
hours: based on Didi travel data[J]. Human
Geography, 2022, 37(5): 130-139.
商强,林赐云,杨兆升,等. 基于谱聚类与RS-KNN
的城市快速路交通状态判别[J]. 华南理工大学学
报(自然科学版),2017,45(6):52-58.
SHANG Qiang, LIN Ciyun, YANG Zhaosheng, et
al. Traffic state identification for urban expressway
based on spectral clustering and RS-KNN[J].
Journal of South China University of Technology
(Natural Science Edition), 2017, 45(6): 52-58.
王劲峰,徐成东. 地理探测器:原理与展望[J]. 地
理学报,2017,72(1):116-134.
WANG Jinfeng, XU Chengdong. Geodetector:
principle and prospective[J]. Acta Geographica
Sinica, 2017, 72(1): 116-134.
吴欣玥,廖家仪,张晓荣. 基于多源数据融合的
成都市职住空间特征及影响因素研究[J]. 规划
师,2023,39(1):120-127.
WU Xinyue, LIAO Jiayi, ZHANG Xiaorong.
Employment-residence space characters and their
influencing factors based on multi-sourced data
integration, Chengdu[J]. Planners, 2023, 39(1):
120-127.
韩会然,杨成凤. 不同住房产权下居民居住区位
选择的影响因素研究——以北京都市区为例[J].
现代城市研究,2022(9):27-33.
HAN Huiran, YANG Chengfeng. Study on impact
factors of residential location choice of urban
residents in different housing property: a case
study on the Beijing metropolitan area[J]. Modern
Urban Research, 2022(9): 27-33.