春节期间的PM2.5污染短期暴露健康效应评估* ——以长三角地区25个城市为例

The Evaluation of Health Effect of Short-term Exposure to PM2.5 during Spring Festival: A Case Study of 25 Cities in the Yangtze River Delta

戴劭勍
荷兰特文特大学地理信息与对地观测学院 博士研究生

江辉仙(通信作者)
福建师范大学地理科学学院 福建省陆地灾害监测评估工程技术研究中心 副教授,硕士生导师

陈方煜
福建师范大学地理科学学院

杨维旭
福建省同安第一中学 二级教师,硕士

李佳佳
中国科学院城市环境研究所城市环境与健康重 点实验室 硕士研究生

摘要: 春节人口迁徙是中国一年一度在全国范围内的人口大型迁徙活动。基于空间全生命周期流行病学理论框架,集成多源时空数据和机器学习算法实现日尺度的PM2.5高时空分辨率制图,结合腾讯位置大数据评估长三角区域人群PM2.5污染短期暴露健康风险。结果如下:(1)基于随机森林构建的PM2.5高时空分辨率制图模型空间交叉验证结果R2达到0.8以上,具有良好的精度;(2)春节人口迁徙行为使得全国范围内人口在短期内大规模流动,导致长三角地区PM2.5短期暴露健康风险增加和减少的迁徙人口分别有6 070万人和6 175万人;(3)春节人口迁徙行为导致的PM2.5污染短期暴露健康风险危害不容忽视,增加风险均值在0.25—0.39,高值在0.9以上;(4)PM2.5污染短期暴露健康效应具有强烈的时空异质性,两天内的健康风险变化极大(0.84,-0.75);(5)在长三角地区的部分城市中,大部分迁徙人口的春节迁徙行为导致PM2.5污染短期暴露健康风险增加,如上海和苏州,暴露人口约有1 320万人和600万人。以期为PM2.5污染短期暴露健康效应估算提供实证分析,丰富了空间全生命周期流行病学的应用案例。

Abstract: Human mobility during the Spring Festival is a large-scale annual human mobility across China. This paper evaluated the human health risks of short-term exposure to PM2.5 in the Yangtze River Delta through a combination of the daily-level high spatiotemporal mapping of PM2.5 based on integrated multi-sources spatiotemporal data and machine learning algorithm, and Tencent mobility data based on the theoretical framework of spatial life-course epidemiology. The results showed that: (1) the accuracy of the random forest model for PM2.5 spatiotemporal mapping by spatial cross-validation is more than 0.8. (2) Human mobility behavior enables large-scale mobility across the country in a short period during the Spring Festival, which leads to 60.7 million and 61.75 million populations who have increased and decreased the health risk of short-term exposure to PM2.5 respectively. (3) We should not ignore the health risks of short-term exposure to PM2.5 caused by human mobility behavior during the Spring Festival, because the estimated average increased risks are from 0.25 to 0.39. The highest risk is more than 0.9. (4) This reveals strong spatiotemporal heterogeneity in the health effect of short-term exposure to PM2.5. Even the value of risks could change from 0.84 to -0.75 in two days. (5) Most of the travel populations in the Yangtze River Delta have increased the health risk of short-term exposure to PM2.5 caused by human mobility during the Spring Festival, such as Shanghai and Suzhou, with the exposed populations reaching to nearly 13.2 million and 6 million. This paper provides a practice case study to evaluate the health risk of short-term exposure to PM2.5 and enriches the application of spatial life-course epidemiology.

关键词:PM2.5短期污染暴露;春节人口迁徙;时空制图;机器学习

Keyword: short-term exposure to PM2.5 pollution; human mobility during the Spring Festival; spatiotemporal mapping; machine learning

中图分类号:TU984

文献标识码: A

资金资助

福建省自然科学基金项目 “基于移动终端的大型公共建筑物智能消防疏散系统关键技术研究” 2018J01740

XING Y F, XU Y H, SHI M H, et al. The impact of PM2.5 on the human respiratory system[J]. Journal of Thoracic Disease, 2016, 8(1): 69-74.
BOWE B, XIE Y, LI T, et al. The 2016 global and national burden of diabetes mellitus attributable to PM2.5 air pollution[J]. The Lancet Planetary Health, 2018, 2(7): 301-312.
DELFINO R J, SIOUTAS C, MALIK S. Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health[J]. Environmental Health Perspectives, 2005, 113(8): 934-946.
FOROUZANFAR M H, AFSHIN A, ALEXANDER L T, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. The Lancet, 2016, 388(10053): 1659-1724.
LIU J, HAN Y, TANG X, et al. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network[J]. Science of the Total Environment, 2016, 568: 1253-1262.
TIAN L, ZENG Q, DONG W, et al. Addressing the source contribution of PM2.5 on mortality: an evaluation study of its impacts on excess mortality in China[J]. Environmental Research Letters, 2017, 12(10): 104016.
SONG C, HE J, WU L, et al. Health burden attributable to ambient PM2.5 in China[J]. Environmental Pollution, 2017, 223: 575-586.
APTE J S, BRAUER M, COHEN A J, et al. Ambient PM2.5 reduces global and regional life expectancy[J]. Environmental Science & Technology Letters, 2018, 5(9): 546-551.
LU F, XU D, CHENG Y, et al. Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population[J]. Environmental Research, 2015, 136: 196-204.
HORNE B D, JOY E A, HOFMANN M G, et al. Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection[J]. American Journal of Respiratory and Critical Care Medicine, 2018, 198(6): 759-766.
LEE S, LEE W, KIM D, et al. Short-term PM2.5 exposure and emergency hospital admissions for mental disease[J]. Environmental Research, 2019, 171: 313-320.
MAT T, GUAITA R, PICHIULE M, et al. Short-term effect of fine particulate matter (PM2.5) on daily mortality due to diseases of the circulatory system in Madrid (Spain)[J]. Science of the Total Environment, 2010, 408(23): 5750-5757.
WILLIAMS A M, PHANEUF D J, BARRETT M A, et al. Short-term impact of PM2.5 on contemporaneous asthma medication use: behavior and the value of pollution reductions[J]. Proceedings of the National Academy of Sciences, 2019, 116(12): 5246-5253.
WEI Y, WANG Y, DI Q, et al. Short term exposure to fine particulate matter and hospital admission risks and costs in the Medicare population: time stratified, case crossover study[J]. BMJ, 2019, 367: l6258.
COLMER J, HARDMAN I, SHIMSHACK J, et al. Disparities in PM2.5 air pollution in the United States[J]. Science, 2020, 369(6503): 575-578.
郭文伯,张艳,柴彦威. 城市居民出行的空气污染暴露测度及其影响机制——北京市郊区社区的案例分析[J]. 地理研究,2015,34(7):1310-1318.
GUO Wenbo, ZHANG Yan, CHAI Yanwei. Measurement of residents' daily travel air pollution exposure and its mechanism: a case study of suburban communities in Beijing[J]. Geographical Research, 2015, 34(7): 1310-1318.
MA X, LI X, KWAN M P, et al. Who could not avoid exposure to high levels of residence-based pollution by daily mobility? Evidence of air pollution exposure from the perspective of the Neighborhood Effect Averaging Problem (NEAP)[J]. International Journal of Environmental Research and Public Health, 2020, 17(4): 1223.
JIA P. Spatial life-course epidemiology[J]. The Lancet Planetary Health, 2019, 3(2): 57-59.
潘竟,赖建. 中国城市间人口流动空间格局的网络分析——以国庆—中秋长假和腾讯迁徙数据为例[J]. 地理研究,2019,38(7):1678-1693.
PAN Jing, LAI Jian. A network analysis of the spatial pattern of population flow among cities in China: taking the National Day - Mid-autumn Festival and Tencent's migration data as examples[J]. Geographical Research, 2019, 38(7): 1678-1693.
周素红,张琳,林荣平. 地理环境暴露与公众健康研究进展[J]. 科技导报,2020,38(7):43-52.
ZHOU Suhong, ZHANG Lin, LIN Rongping. Progress and prospect of the research on geographical environment exposure and public health[J]. Science & Technology Review, 2020, 38(7): 43-52.
王楠,王会,杜云,等. 青藏高原人口流入流出时空模式研究[J]. 地理学报,2020,75(7):1418-1431.
WANG Nan, WANG Hui, DU Yun, et al. Research on the temporal and spatial patterns of population inflow and outflow in the Qinghai-Tibet Plateau[J]. Acta Geographica Sinica, 2020, 75(7): 1418-1431.
赵梓. 基于大数据的中国人口迁徙空间格局及其对城镇化影响研究[D]. 长春:吉林大学,2018.
ZHAO Zi. Research on the spatial pattern of Chinese population migration and its impact on urbanization based on big data[D]. Changchun: Jilin University, 2018.
刘张,千家乐,杜云艳,等. 基于多源时空大数据的区际迁徙人群多层次空间分布估算模型——以COVID-19疫情期间自武汉迁出人群为例[J]. 地球信息科学学报,2020,22(2):147-160.
LIU Zhang, QIAN Jiale, DU Yunyan, et al. Multi-level spatial distribution estimation model of the inter-regional migrant population using multi-source spatio-temporal big data: a case study of migrants from Wuhan during the spread of COVID-19[J]. Journal of Geo-information Science, 2020, 22(2): 147-160.
YANG Z, ZENG Z, WANG K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of Thoracic Disease, 2020, 12(3): 165-174.
SONG W, JIA H, HUANG J, et al. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China[J]. Remote Sensing of Environment, 2014, 154: 1-7.
WEI J, HUANG W, LI Z, et al. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach[J]. Remote Sensing of Environment, 2019, 231: 111221.
LIU Y, CAO G, ZHAO N, et al. Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach[J]. Environmental Pollution, 2018, 235: 272-282.
STAFOGGIA M, BELLANDER T, BUCCI S, et al. Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013-2015, using a spatiotemporal land-use random-forest model[J]. Environment International, 2019, 124: 170-179.
MA J, DING Y, CHENG J C P, et al. A temporal-spatial interpolation and extrapolation method based on geographic Long Short-Term Memory neural network for PM2.5[J]. Journal of Cleaner Production, 2019, 237: 117729.
LEE H M, PARK R J, HENZE D K, et al. PM2.5 source attribution for Seoul in May from 2009 to 2013 using GEOS-Chem and its adjoint model[J].
Environmental Pollution, 2017, 221: 377-384.
SAIDE P E, CARMICHAEL G R, SPAK S N, et al. Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model[J]. Atmospheric Environment, 2011, 45(16): 2769-2780.
HE Q, GU Y, ZHANG M. Spatiotemporal trends of PM2.5 concentrations in central China from 2003 to 2018 based on MAIAC-derived high-resolution data[J]. Environment International, 2020, 137: 105536.
CHEN J, YIN J, ZANG L, et al. Stacking machine learning model for estimating hourly PM2.5 in China based on Himawari 8 aerosol optical depth data[J]. Science of the Total Environment, 2019, 697: 134021.
VAN DONKELAAR A, MARTIN R V, LI C, et al. Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors[J]. Environmental Science & Technology, 2019, 53(5): 2595-2611.
LI R, MA T, XU Q, et al. Using MAIAC AOD to verify the PM2.5 spatial patterns of a land use regression model[J]. Environmental Pollution, 2018, 243: 501-509.
HUANG C S, LIN T H, HUNG H, et al. Incorporating satellite-derived data with annual and monthly land use regression models for estimating spatial distribution of air pollution[J]. Environmental Modelling & Software, 2019, 114: 181-187.
SHAO Y, MA Z, WANG J, et al. Estimating daily ground-level PM2.5 in China with random-forest-based spatiotemporal kriging[J]. Science of the Total Environment, 2020, 740: 139761.
VAN DONKELAAR A, MARTIN R V, BRAUER M, et al. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter[J]. Environmental Health Perspectives, 2015, 123(2): 135-143.
GREEN P J, SILVERMAN B W. Nonparametric regression and generalized linear models: a roughness penalty approach[M]. London: CRC Press, 1993.
BREMAN L. Random forest[J]. Machine Learning, 2001, 45(1): 5-32.
CHEN T, GUESTRIN C. Xgboost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2016: 785-794.
VALAVI R, ELITH J, LAHOZ-MONFORT J J, et al. blockCV: an R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models[J]. Methods in Ecology and Evolution, 2019, 10(2): 225-232.
CHEN K, WANG M, HUANG C, et al. Air pollution reduction and mortality benefit during the COVID-19 outbreak in China[J]. The Lancet Planetary Health,2020, 4(6): 210-212.
CHEN R, YIN P, MENG X, et al. Fine particulate air pollution and daily mortality: a nationwide analysis in 272 Chinese cities[J]. American Journal of Respiratory and Critical Care Medicine, 2017, 196(1): 73-81.
CHEN G, LI S, KNIBBS L D, et al. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information[J]. Science of the Total Environment, 2018, 636: 52-60.
LI T, SHEN H, YUAN Q, et al. Estimating ground-level PM2.5 by fusing satellite and station observations: a geo-intelligent deep learning approach[J]. Geophysical Research Letters, 2017, 44(23): 11985-11993.
ZHAN Y, LUO Y, DENG X, et al. Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm[J]. Atmospheric Environment, 2017, 155: 129-139.
MEYER H, REUDENBACH C, WÖLLAUER S, et al. Importance of spatial predictor variable selection in machine learning applications - moving from data reproduction to spatial prediction[J]. Ecological Modelling, 2019, 411: 108815.
KLOOG I, RIDGWAY B, KOUTRAKIS P, et al. Long- and short-term exposure to PM2.5 and mortality: using novel exposure models[J]. Epidemiology, 2013, 24(4): 555-561.
SHI G, LU X, DENG Y, et al. Air pollutant emissions induced by population migration in China[J]. Environmental Science & Technology, 2020, 54(10): 6308-6318.
JIA P, LAKERVELD J, WU J, et al. Top 10 research priorities in spatial life-course epidemiology[J]. Environmental Health Perspectives, 2019, 127(7): 074501.

微信扫一扫
关注“上海城市规划”
公众号